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ABSTRACT

In this paper we discuss the applications of high order compact finite difference methods

for shock calculations. The main idea is the definition of a local mean which serves as a

reference for introducing a local nonlinear limiting to control spurious numerical oscillations

while keeping the formal accuracy of the scheme. For scalar conservation laws, the resulting

schemes can be proven total variation stable in one space dimension and maximum norm

stable in multiple space dimensions. Numerical examples are shown to verify accuracy and

stability of such schemes for problems containing shocks. The idea in this paper can also be

applied to other implicit schemes such as the continuous Galerkin finite element methods.
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1 Introduction

Compact schemes are methods where the derivatives are approximated not by polynomial

operators but by rational function operators on the discrete solutions. In this paper we are

interested in solving a hyperbolic conservation law

ut + f(u)_ + g(u)u - 0

u(x,y,0) = u°(x,y) (1.1)

using compact schemes. In the semi-discrete form, a compact scheme for solving (1.1) can

be written as

dUqdt - 2x (A-_lBxf(u))ij 2y (A;1Byg(?A))ij _- L(_)iJ (1.2)

where A and B are both local, one dimensional operators. The subscript x or y indicates

that the operator is applied in the x or y direction,

For example, a fourth order central compact scheme is given by (1.2) with

1

(Av)i = -_(vi-, + 4vi + vi+l)

1

(B.), = 5(.,+1- v,_l),

a sixth order central compact scheme is given by

(1.3)

1

= -_(vi-x + 3vi + vi+l)

-- fl^ (73i+ 2 + 28Vi+! -- 28v__1 Vi-2),
DO

and two third order upwind compact schemes are given by

(1.4)

and

1

(Av)i = g(-vi-1 + 5vi- vi+l)

1

(B_), = _(3_,-4v___+ v___) (1.5)

(Av)i 1 v= -5(- i-1+ 5vi- vi+_)
1

(B,)_ = _(-.,+2 + 4v,+x- 3v,) (1.6)

depending upon the wind direction. Noticethat (1.5) and (1.6) have the same implicit part

A which is symmetric. This fact will be used later in Section 2 to define our local means.



The costof compactschemes,regardlessof the number of space dimensions, involves only

inversion of the narrowly banded (usually tridiagonal) matrix A and hence is comparable

to explicit methods. This is notably different from other implicit methods such as the

continuous Galerkin finite element methods in multiple space dimensions, even if they are

similar in one space dimension,

The advantages of compact schemes include the relatively high order of accuracy using a

compact stencil (for example, the fourth order scheme (1.3) when discretized in time using

Euler forward, uses only a three point stencil in each time level), a better (linear) stability,

and usually fewer boundary points to handle. In recent years compact schemes have attracted

much attention in various fields such as the direct numerical simulations of turbulence. We

refer the readers to [2], [31, [41, [12], and [181 for more details.

The objective of this paper is to apply compact schemes for shock calculations. As

with any other linear schemes (schemes which are linear when applied to linear equations),

compact schemes usually demonstrate nonlinear instability when applied to discontinuous

data. We follow the TVD (total variation diminishing) ideas in [9], [13] and try to define

a suitable nonlinear local limiting to avoid spurious oscillations while keeping the formal

accuracy of the scheme. Notice that the compact scheme, like an implicit scheme, is global.

That is, the approximation to f(u)_ at x = xi involves Uk along the whole line due to the

tridiagonal inversion A -1. Our main idea is to define a local mean, and use it as a reference for

introducing a local limiting. In Section 2 we introduce the limiting for one space dimension

and prove total variation stability. In Section 3 we introduce the limiting for multiple space

dimensions and prove maximum norm stability. In Section4 we present numerical examples,

and concluding remarks are included in Section 5.

The ideas in this paper were first used by us for continuous Galerkin finite element method

in [7]. That is an on-going project. In this paper we restrict our attention to scalar problems

in order to obtain provable stability results. The application of the method to systems of

hyperbolic conservation laws and to other types of compact schemes (e.g. [1]) is currently

under investigation.

In this paper, we use the total variation diminishing (TVD) Runge-Kutta type time dis-

cretization, introduced in [14], [17], to discretize the ODE in the method-of-lines formulation

(1.2). In the second order case, the time discretization is

u O) = u n+AtL(u '_)

u"+l = _u"+2uo)+lAtL(uO)),

and in the third order case it is

(1.7)

u (1) = u n+AtL(u n)

3 , lu(,) 4AtL(uO) ) (1.8)u (2) = _u + +

u'*+x = 3 u" + _u(_) + _AtL(u(2)).

These special Runge-Kutta type time discretizations are labelled TVD because it can be

proven that under suitable restrictions on the time step At (the CFL condition), the full
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discretization (1.7) or (1.8) is TVD, or stable under another norm (for example, the L_

norm) if the first order Euler forward time discretization for (1.2)

u "+1 = u '_ + AtL(u '_) (1.9)

is TVD or stable under the other norm. For details, see [14] and [17].

We thus only need to consider the Euler forward scheme (1.9) for stability analysis in the

subsequent sections.

2 One Space Dimension

In one space dimension, equation (1.1) becomes

the scheme (1.2) is

u, +/(u)_ = 0
u(x,0) = :(z), (2.1)

dt - (A'IBf(U))_ = L(u)_,

and the Euler forward time discretization (1.9) becomes

u7 +1 = u'_ + AtL(u");.

Scheme (2.3) can be easily written into a conservation form

. At (h", "u_+1= ui - A_ _+_- hi-½)

(2.2)

(2.3)

(2.4)

suitable for shock calculations. However, the numerical flux hi+ ½ is not a local function of

u_ due to the tridiagonal inversion A -_. If we define

_; = (Au);, (2.5)

then scheme (2.3) can be left-multiplied by A to become

_,_+1 = fi,_ _ _._tx(B f (u n )) i .

When written into a conservation form,

-,_ At .], I ^"_,+' = _ - h--;_( i÷_- f__½),

this involves a numerical flux ]_½ which is a local function of u_. For example,

^ 1

fi+½ -- _ (f(u,+1)+ f(u,))

for the fourth order central scheme (1.3),

(2.6)

(2.7)

(2.8)



^ 1

fi+½ = '_ (f(u_+2) + 29f(ui+:) + 29f(ui) + f(ui_:))

for the sixth order central scheme (1.4), and

(2.9)

1

]i+½ = -_(3f(ui)- f(ui-1)) (2.10)

and

^ 1

fi+½ = -_(-f(ui+2) + 3f(ui+:)) (2.11)

for the two third order upwind schemes (1.5) and (1.6), respectively. Notice that scheme

(2.7) resembles a cell-averaged (finite volume) scheme [11]. The fii in (2.5), like a cell average,

is a local mean of u, defined by Au in (1.3) through (1.6). Since the computation of the flux
^

fi+½ in (2.7) involves the values of u, a "reconstruction" from fi to u

ui = (A-lfi)i

is needed. This reconstruction is global.

It is now rather straightforward to define the limiting. We first write

(2.12)

f(u)= f+(u) + f-(u) (2.13)

with the requirement that

cgf+(U)ou >_ O, Of-(U)ou <- O. (2.14)

The purpose of this flux splitting is for easier upwinding at later stages. The simplest such

splitting is due to Lax-Friedrichs

1

f±(u) = -_ (f(u) + at), = max If'(u)l (2.15)

where the maximum is taken over the range of u°(x). We then write the flux ]_+_ in (2.7)
also as

where f_"+½ are obtained by putting superscripts + in (2.8) through (2.11).
Next we define

(2.16)

Here dfi+_ are the differences between the numerical fluxes f___½ and the first order, upwind

fluxes S+(_i) and f-(fii+l). These differences are subject to limiting for nonlinear stability.

We define the limiting by
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<+<.): m
:.

where A+vi - vi+l - vi is the usual forward difference operator, and the (now standard)

minmod function m is defined by

and

sminl_<i_<k lad, if sign(al) =...= sign(ak) = sm(al,..', ak) = O, otherwise.

Notice that the limiting defined in (2.18) is upwind biased.

The limited numerical fluxes are then defined by

]i+(m) ,_,_+(m).
+3 = f+(fii) +,_ji+½ ' ]/__(;) = f-(l_i+l) -- df-(_n)i+_-

,_+½= Ji+½

If we define the total variation of the mean fi by

TV(fi) = _ Ifi,+,- <1

(2.19)

(2.20)

(2.21)

(2.22)
i

we have the following proposition.

Proposition 2.1

Scheme (2.7) with the flux (2.21) is TVDM (total variation diminishing in the means)

rv(e "+') <_ TV(_") (2.23)

under the CFL condition

At < 1 (2.24)max (f+'(u)- f-'(u)) Am,mini ti_i_<u_<maxl _? _ -- 2"

Proof: We follow Harten [9] and write the flux difference as

where

(2.25)i(.,) _(m) = -Ci+½A+fii + D i _ A+_;_l+3 -_-½ --

Ci+½ =
,,+s-(_,)-<_i,;<.' +_i:_<r'

A+ui

a+f't'("i-1) + d]i;(F)- di;"t--(_) (2.26)
Di-½ = A+ui-a



The limiting in (2.18)and the propertiesof f±(u) in (2.14) clearly imply

Ci+½ k O, Di_ ½ >>_0 (2.27)

and

Ax - A--_ \ A+_ i < 1 (2.28)

The last inequality is due to the CFL condition (2.24). TVDM (2.23) is now immediate

according to Harten [9].

[]

In order to obtain total variation stability for u, we need the following simple lemma.

Lemma 2.2

If there are two numbers 0 _< 6 < 1 and _ > 0, which are independent of N, such that

the N x N matrix A = (aij) satisfies:

1 N

max _ < _, and y_ laijl < 6 Iajj[, j = 1,..., N (2.29)
I_<____N[aij [ - i = 1

_¢j

(strongly diagonally dominance for the transpose of A), then the L1 norm of A -1 is bounded

independently of N,

o_ (2.30)IIA-111L'< 1-6"

Proof: Let A = diag(axl,... ,aNN), B = A - A and C = -BA -1. We have

N N

IICIIL,= max E lcijl = max E laiJl < 6.
I_<j_<N lajjl -I<_j<N i----1 i = 1

i#j

Hence it follows that

-- 11[(I - C)A]-_ [15,= IIA-'(/- C)-illz,
1

< IIA-'tIL, II(I-C)-'IIL_ < IIA-IttL, 1 _ IICIIL,

<
- 1-6"

[]



For most compact methods, the matrix A satisfies the condition (2.29) for Lemma 2.2.

For example, in the schemes defined by (1.3), (1.4), (1.5) and (t.6), A satisfies the condition

(2.29) with 6 - _, a -- 6; 6 = _, a = 5; 6 - ], a = 3 and 6 = ], a = 3, respectively. For

such compact schemes, we can now prove the total variation stability for u.

Proposition 2.3

If a compact scheme (2.7) satisfies the conditions in Proposition 2.1 and Lemma 2.2, then

it is TVB (total variation bounded). That is,

i

for all n > 0 and At > 0. Here C is a constant independent of n and At.

Proof:

By (2.12), we have

(2.31)

_ _ : _TV(_°) •
i

[]

This Proposition guarantees convergence of at least a subsequence of the numerical so-
lution.

We now discuss whether the limiting defined in (2.18) maintains the formal accuracy

of the compact schemes in smooth regions of the solution. For this we need the following

assumption.

Assumption 2.4

= (Au),= u, + (2.32)
for alluCC 2.

[]

This Assumption is satisfied by any compact scheme with a symmetric A, for example

all those listed in (1.3) through (1.6).

Under Assumption 2.4, it is easy to verify by simple Taylor expansions that

A+f±(fik) = f±(_i)aAx -'I-O(Ax 2)

= Ifi(_,)xAx Jr O(Ax2).
2

k = i- 1,i,i + 1

(2.33)

Hence in smooth regions away from critical points (critical points are defined here as

points for which f+(fi)= = 0 or f-(fi)= 0), the second and third arguments of the minmod



functions in (2.18) are asymptotically of the samesign as the first argument and half in
magnitude. Hencethe first argument will be picked by the minmod function (2.19) for

sufficiently small Ax, thus yielding

d,_+(m) ^
j,+_ =df_. (2.34)

This guarantees the original high order accuracy of the scheme in such smooth, monotone

regions. At critical points, the accuracy will degenerate to first order as a generic restriction

of all TVD schemes (see, for example, [13]). To overcome this difficulty, we use a modification
of the minmod function

{ a_, if la_l <_ MAx 2rh(al,... ,ak) = m(al,...,ak), otherwise
(2.35)

where M is a constant independent of Ax. This modification is discussed in detail in [5] and

[15].
With this modification we can obtain schemes which are formally of uniform high order

accuracy and equal the original unlimited scheme in smooth regions including local extrema.

Moreover, we can prove the following proposition.

Proposition 2.5

The conclusions of Proposition 2.1 and 2.3 are still valid for any n and At such that

0 < nat < T, with TVDM in (2.23) replaced by TVBM (total variation bounded in the

means)

TV(_t '_) <_ C (2.36)

where C is independent of At, if the minmod function m in (2.18) is replaced by the modified

minmod function rh defined in (2.35).

Proof:

The proof is similar to that contained in [15] and [5] and is thus omitted.

D

The choice of the constant M in (2.35) is related to the second derivative of the solution

near smooth extrema. For details, see [5] and [15]. The numerical result is usually not

sensitive to the variation of M in a large range.

In this paper we only consider pure initial value problems, u ° in (1.1) is assumed to

be either periodic or compactly supported. For initial boundary value problems, _ in (2.5)

is defined differently at the boundary, as is the scheme (2.6). The limiting (2.18) can be

modified at the boundary so that the scheme remains TVDM (or TVBM) and TVB for

initial boundary value problems. We refer the readers to [5] and [16] for more details.

3 Multiple Space Dimensions

For notational simplicity we only consider the two dimensional case (1.1)-(1.2). Three space

dimensions do not pose additional conceptional difficulties. As before, we only need to

consider the Euler forward time discretization



u _+l,j = u,j_ + AtL(u_)ij. (3.1)

We again define

_ij - (AuA,u)ij (3.2)

so that scheme (3.1) can be left-multiplied by AuA_ to become

_n+l - At At n
,j = u_ Ax (AyB_f(u"))O -_yy(ZxB_f(u ))ii. (3.3)

Here and in what follows we will use the commutativity of Ax, Au, B_ and Bu so that a

product can be written in any order. Scheme (3.3) can be written into a conservation form

A -A, ^° (3.4)

A,_ ^'_ local functions of u_t. For example,which involves numerical fluxes f_+ ½5 and 9_,j+ ½ as

]i+½,_

^

g_,j + ½

1

= _Au(f(ui+ld) + f(uij))

1

= + (3.5)

for the fourth order central scheme (1.3), with analogous definitions for the other schemes.

Again, scheme (3.4) resembles a cell-averaged (finite volume) scheme [10]. The/hi defined

by (3.2) is a local mean of u, and a "reconstruction" from fi to u

uij = ( A-_l A-u' ft)ij (3.6)

is needed to compute the fluxes ]i+},j and _i,j+} in (3.4).

We remark that the additional costs of implementing scheme (3.4), comparing with the

original scheme (3.1), are the two local operators A, and Au. The major part of the cost still

consists of the two tridiagonal inversions.

The limiting to obtain nonlinear stability can now be defined in a dimension by dimension

fashion; we can use the one-dimensional flux splitting (2.13), for f(u), to write the flux ]i+½,j

^ ^+ (3.7)= Yi+ ,j+ ]5 ,j
%

where f_+½,j are again obtained by putting superscripts 4- in, for example (3.5). The remain-

ing definition of the limiting parallels that in Section 2, with a dummy index j added for

the reference y value. We still start with the differences between the high order numerical

fluxes and the first order upwind fluxes

^ = fi+},j- f+(uij);

and limit them by

d]_+},j = f- (zti+l,j) - ]i+½,j
(3.8)

9



-"' (:a "-- "- )) (,.o)Ji+},j = m d , .,A+f (uij),A+f (ui+l,j

where A_+vij - Vi+l, j -- Vij is the forward difference operator in the x direction and the

minmod function m is defined by (2.19). We then obtain the limited numerical fluxes by

if(m) = f+(_) + a/+(-0. /-(m) a/-(m)
+½,j '_Ji+½,j, Ji+½,j = f-(ui+l,j) - (3.10)"- _+½,j

and

]_(m) _/+(m) ,;-(m)
+},J - _+ ½,_+ ,_+},j"

The flux in the y-direction is defined analogously.

In light of [8] this scheme cannot be TVD in two space dimensions.

obtain maximum norm stability through the following proposition.

Proposition 3.1

Scheme (3.4) with the flux (3.11) satisfies a maximum principle in the means

(3.11)

However we can

max fin.+llt < max _._. (3.12)
i,j tj _ i,j ta

under the CFL condition

[max(f+'(u)) +max(-f-'(u))] _xxAt+ [max(g+,(u))+max (-g-'(u))] At < _1 (3.13)
A-yV- 2

where the maximum is taken in mini,j un,a -< u _< max/,j fi_..

Proof: Similar to the development in Proposition 2.1, we can write the flux differences as

with

]iCm) _(_) _ _ _ -
+},j -- .q_½,j -- -Ci+½,jA+ _i j + Di_},jA+ ui-lj

i,J+ ½ -- Yi,j-½ --" --Ci,j+½ a Y+uiJ "+ Di,J-½ A Y+ui,j-1 (3.14)

C_+½,j >_ 0, Di_}, j >_ 0, Cid+½ >_ O, Di,j_ ½ >_ 0

due to the flux splitting (3.7), the limiting (3.9), and

At (Ci+½, j + Di_½,j) + AtAx _yy (C/j+½ + Dis_}) <_ 1

the CFL condition (3.13).
We then have

(3.15)

(3.16)

10



5n. .+ 1
s3

• -,, At (C,,j+½A_+_,}_ Di,j_½Ay+fi_,i_,)

= 1- _ (C_+½, i+ D,_½,i) - At (C,,j+½ + Di,j__ ,,

which implies the maximum principle (3.12) because fi.'.+1 is written as a convex combinationz3

of 5_, 5,n,l,j and 5_,j+ 1 with positive coefficients which add up to one.

[]

In order to obtain maximum norm stability for u, we need a lemma similar to Lemma 2.2.

Lemma 3.2

If there are two numbers 0 < 6 < 1 and a > 0, which are independent of N, such that

the N x N matrix A = (aij) satisfies:

1
max v'--'=, < a, and

l<i<N laiil -

N

E
j=l
j¢i

la,jl <_613,1, i= 1,...,N (3.17)

(strongly diagonally dominance for A), then the L_ norm of A -a is bounded independent

of N

':' (3.18)IIA-'IIL < 1 - 6"

Proof: The proof is similar to that for Lemma 2.2 and is thus omitted.

[]

For the compact methods we consider, the matrix A is symmetric. Hence the requirements

(2.29) and (3.17) are the same.

We can now use Lemma 3.2 to obtain the maximum norm stability for u.

Proposition 3.3

If a compact scheme (3.4) satisfies the conditions in Proposition 3.1 and Lemma 3.2 for

both A_ and A_, then it is stable in the maximum norm. That is,

I '_l < C (3.19)ma.x uij _
1,3

for alln >__0 and At > O. Here C isa constant independent of n and At.

proof:

By (3.2), we have

11



max ij •
- i,j

[]

This Proposition does not guarantee convergence, but it at least guarantees that the

numerical solution will not blow up due to instability.

Under the Assumption 2.4 for both A, and Ay, we can again easily verify that the

limiting (3.9) maintains formally the original high order accuracy of the scheme in smooth,

monotone regions. The degeneracy of accuracy at critical points can once again be overcome

by adopting the modified minmod function (2.35) in the limiting (3.9).

4 Numerical Examples

To test the behavior of the schemes discussed in Sections 2 and 3, we use the one and two

dimensional Burgers equation with the smooth initial conditions

and

u_ + (.;)0
u(x,0) = 0.3+0.7sin(x) (4.1)

us + + = 0

x y

u(x,y,O) -- 0.3+0.7sin(x+y). (4.2)

Both are assumed to have 2_r-periodic boundary conditions. The solutions will stay smooth

initially, and then develop shocks which move with time. The exact solution to (4.1) can be

obtained by following the characteristics and solving the resulting nonlinear equation using

Newton iteration. The exact solution to (4.2) is that of (4.1) with x replaced by x + y and

t replaced by 2t. These are standard test problems for scalar nonlinear conservation laws

containing shocks. For comparison with finite difference ENO schemes and finite element

discontinuous Galerkin methods, see [17], [5] and [6].

The schemes we test are based on the fourth order central scheme (1.3) coupled with a

fourth order Runge-Kutta time discretization (henceforth referred to as the central scheme),

as well as the third order upwind schemes (1.5)-(1.6) coupled with the third order TVD

Runge-Kutta time discretization (1.8) (henceforth referred to as the upwind scheme). For

the flux splitting (2.13) we use the Lax-Friedrichs splitting (2.15). The time step At '_ is

taken to satisfy a CFL condition

12



in one dimensionand

At ,_

m#×la;'l -<0.5 (4.3)

max _.. _/ktn Atn_ < 0.5 (4.4)
_,j '_ \Ax ÷ Ay] -

in two dimensions. When the modified minmod limiter (2.35) is used, the constant M is
taken as 1.

We first test the effect of limiters when the solution is smooth but not monotone. In

Figure 1 we plot the L1 error versus number of grid points, in a log-log scale, at t = 0.6 for

the one dimensional case and at t = 0.3 for the two dimensional case. In such scales, the error

should be a straight line with slope -k for a k-th order method. We can see that the original

compact schemes and the schemes with modified minmod limiter (2.35) (henceforth referred

to as the TVB limiter) give the expected third and fourth order accuracy respectively, while

the schemes with the minmod limiter (2.19) (henceforth referred to as the TVD limiter) give

only second order accuracy due to the degeneracy at the critical points. We can also see

that both the central and the upwind schemes work well for this smooth problem.

We then test the effect of limiters when the solution becomes discontinuous. In Figure 2

we show the results of the original compact schemes at t = 2 for the one dimensional case.

We can see over- and under-shoots as well as oscillations, and in this case the result of the

central scheme is much worse than that of the upwind one. In Figures 3 and 4 we show

the results with the TVD and the TVB limiters. Apparently the limiters have stabilized

the solution, as predicted by the theory. However the result with the central scheme is not

quite satisfactory. In Figures 5 and 6, we show the pointwise errors, in a logarithm scale, for

the numbers of grid points N = 10, 20, 40, 80 and 160. We can see that the central scheme,

even with the TVB limiter, shows a reduced accuracy for quite a large region around the

shock. This indicates that, for a scheme which is globally oscillatory (like the central compact

scheme), limiters can render it stable but may kill accuracy in smooth regions since there

are oscillations there to suppress. On the other hand, the upwind compact scheme work

well, with bigger errors for the TVD limiter near the smooth extremum which is close to the

shock. The errors for the two dimensional case are similar and are not displayed. In the last

plot, Figure 7, we show the surface of the two dimensional solution at t = 1 with 40 × 40

points using the third order upwind method with TVB limiting.

5 Concluding Remarks

We have discussed a general framework to apply local limiters on compact schemes via the

definition of a local mean. The resulting schemes are proven TVB (total variation bounded)

in one dimension and maximum norm stable for multiple space dimensions. Numerical

examples show that the base compact scheme should be upwind-biased in order to obtain

high order accuracy after limiting for shocked problems.

13



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

S. Abarbanel and A. Kumar, Compact high order schemes for the Euler equations, J.

Sci. Comput., 3 (1988), pp.275-288.

M. Carpenter, A high-order compact numerical algorithm for supersonic flows, In Pro-

ceedings of the 12th International Conference on Numerical Methods in Fluid Dynamics,

K. W. Morton, ed., Lecture Notes in Physics, v371, Springer-Verlag (1990), pp.254-258.

M. Carpenter, D. Gottlieb and S. Abarbanel, The stability of numerical boundary treat-

ments for compact high-order finite-difference schemes, ICASE Report 91-71 (1991),

NASA Langley Research Center.

M. Ciment and S. Leventhal, Higher order compact implicit schemes for the wave equa-

tion, Math. Comput., 29 (1975), pp.985-994.

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin

finite element method for conservation laws II: general framework, Math. Comput., 52

(1989), pp.411-435.

B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous

Galerkin finite element method for conservation laws IV: the multidimensional case,

Math. Comput., 54 (1990), pp.545-581.

B. Cockburn and C.-W. Shu, Continuous finite element methods for nonlinear conser-

vation laws: preliminary results, TICOM Report, University of Texas at Austin, August

1989.

[8] J. Goodman and R. LeVeque, On the accuracy of stable schemes for 21:) scalar conser-

vation laws, Math. Comput., 45 (1985), pp.15-21.

[9]

[10]

[11]

[12]

[13]

[14]

A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys.,

49 (1983), pp.357-393.

A. Harten, Preliminary results on the extension of ENO schemes to two dimensional

problems Proc. Internat. Conf. on Hyperbolic Problems, Saint-Etienne, 1986.

A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly high order accurate

essentially non-oscillatory schemes, III, J. Comput. Phys., 71 (1987), pp.231-303.

R. Hirsh, Higher order accurate difference solutions of fluid mechanics problems by a

compact differencing technique, J. Comput. Phys., 19 (1975), pp.90-109.

S. Osher and S. Chakravarthy, High resolution schemes and the entropy condition, SIAM

J. Numer. Anal., 21 (1984), pp.955-984.

C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Com-

put., 9 (1988), pp.1073-1084.

14



[15] C.-W. Shu, TVB uniformly high-order schemes for conservation laws, Math. Comput.,

49 (1987), pp.105-121.

[16] C.-W. Shu, TVB boundary treatment for numerical solutions of conservation laws, Math.

Comput., 49 (1987), pp.123-134.

[17] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock

capturing scheme, J. Comput. Phys., 77 (1988), pp.439-471.

[18] R. Vichnevetsky and J. Bowles, Fourier Analysis of Numerical Approximations of Hy-

perbolic Equations, SIAM, Philadelphia, 1982.

15



Figure 1:L1 error versusnumberof grid points in log-log scalefor smoothsolutions. Stars:
compactschemeswithout limiter; squares:with TVD limiter; diamonds:with TVB limiter.
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l(c): Third order upwind scheme, 2D
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Figure 2: Compact schemes without limiter for shocks. Pluses: computed solution; solid

llne: exact solution.
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Figure 3: Third order upwind scheme with limiters for shocks. Pluses: computed solution;

solid line: exact solution.
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Figure 4: Fourth order central scheme with limiters for shocks. Pluses: computed solution;

solid line: exact solution.
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Figure 5: Pointwise error for N = 10,20,40,80 and 160 grid points, in a logarithm scale.

Third order upwind scheme with limiters for shocks.
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Figure 6: Pointwise error for N = 10,20,40,80 and 160 grid points, in a logarithm scale.

Fourth order central scheme with limiters for shocks.
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Figure 7: Surface of third order upwind compact scheme with TVB limiter for shocks, with

40 x 40 points.
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